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  A B S T R A C T 
  Architectural distortion (AD) in mammograms is a subtle yet critical marker of 

early breast cancer, often appear up to two years before other findings like masses 

and calcifications. Despite its clinical significance accounting for up to 45% of 

missed breast cancers AD remains diagnostically challenging due to its subtle 

patterns, overlap with dense breast tissue, and the reliance on radiologist expertise. 

This review synthesizes the evolution of AD detection methodologies, from early 

handcrafted feature-based approaches to advanced machine learning (ML) and deep 

learning (DL) techniques. The performance of these methods is evaluated, 

highlighting the superior results achieved by modern deep learning models, such as 

U-Net and attention-based networks, which automate feature extraction. However, 

challenges persist, including limited annotated datasets and high false-positive 

rates, which hinder clinical adoption. The need for standardized datasets, 

multimodal imaging integration, and collaborative efforts to develop AD-specific 

datasets and hybrid AI-human workflows is emphasized. Bridging technical 

innovations with clinical practice is essential to improving early breast cancer 

diagnosis and ensuring more accurate and widespread detection of architectural 

distortion. 
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1. INTRODUCTION 

Breast cancer remains the most prevalent cancer among women worldwide, accounting for 

nearly 25% of all cancer diagnoses and 15% of cancer-related deaths globally [1]. Early 

detection plays a crucial role in improving survival rates, with studies indicating that localized 

breast cancer has a 99% five-year survival rate compared to 30% for metastatic cases [2]. 

Mammography is the cornerstone of breast cancer screening, identifying abnormalities such as 

masses, calcifications, and architectural distortion (AD). While masses and calcifications are 

well-studied, AD characterized by radiating spicules or disrupted breast parenchyma without a 

distinct mass remains an underrecognized yet critical marker of early malignancy. Figure 1 

illustrates various mammogram images: (a) a suspicious mass, (b) a micro-classification, (c) a 
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distortion of the normal breast architecture on oblique view (yellow circle) and magnification 

view [3]. These images provide visual examples of the different abnormalities that can be 

detected via mammography. 

In Egypt, breast cancer is the most prevalent cancer among women, accounting for 

approximately 38.8% of all female cancer cases. Diagnoses frequently occur in younger women, 

often at more advanced stages due to historically lower early detection rates [4,5]. However, 

recent public health initiatives, such as the 100 Million Healthy Lives campaign launched in 

2019, have improved early detection and awareness. By October 2020, 8.5 million women 

received free screenings through the program, and as of mid-2021, around 16 million women had 

participated. These efforts have contributed to increased awareness, with the Egyptian Ministry 

of Health expanding oncology centers and prioritizing early detection and treatment strategies to 

reduce breast cancer mortality across the country [6,7]. 
 

 

 

Figure 1: Field Mammogram image showing: (a) A suspicious mass. (b) A micro classification.  

(c) A distortion of the normal breast architecture on oblique view (yellow circle) and magnification view [3]. 

 

Architectural distortion is a diagnostic challenge due to its subtle presentation, often 

mimicking benign conditions like radial scars or post-surgical changes [8]. Its association with 

malignancy is strong, with studies suggesting that 25–75% of AD cases prove cancerous on 

biopsy [9]. This challenge is compounded by its lack of well-defined borders and its tendency to 

mimic overlapping dense tissue, which is particularly problematic in women with dense breasts, 

affecting up to 40% of those screened [10]. via mammography. 

The importance of AD detection lies in its potential to detect malignancies in cases where 

masses or calcifications may not be present. Radiologists identify AD through spiculated lines or 

focal retractions of the parenchyma, but these patterns can be difficult to discern, especially in 

dense breast tissue, which reduces screening sensitivity by up to 50% [11]. Furthermore, the 

reliance on radiologist expertise in manual interpretation introduces challenges due to time-

intensive processes (10–15 minutes per case) and the risk of inter-observer variability, which can 

be as high as 30% [12]. Alarmingly, AD accounts for 12% of missed cancers in retrospective 

screenings, highlighting the need for automated, standardized detection systems to support 

radiologists and reduce diagnostic errors [11]. 

(a)                                                             (b)                                                         (c)  
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2. METHODOLOGY 

This systematic review evaluates the advancements in AD detection techniques and their 

impact on early breast cancer diagnosis. The studies included in this review were categorized 

into three methodological groups to assess their contributions to AD detection: traditional 

methods, machine learning approaches, and deep learning approaches. Each category represents 

a distinct level of computational complexity and automation, with varying levels of accuracy and 

sensitivity in detecting AD. 

2.1. Traditional Methods 

Traditional segmentation techniques primarily include manual and semi-automated 

approaches. While foundational in medical imaging, these methods have notable limitations. 

Manual segmentation, performed by radiologists or technicians, requires delineation of regions 

of interest (ROIs) on medical images. Although accurate, this method is labor-intensive and 

prone to inter-observer variability. As noted by [13], manual segmentation is time-consuming 

and may yield inconsistent results, especially in complex cases with subtle distortions.  

Thresholding is a basic segmentation technique that separates image regions based on pixel 

intensity. Despite its simplicity, it often fails to capture intricate details in AD detection. 

According to [14], thresholding requires fine-tuned values to avoid loss of crucial structural 

information. Similarly, edge detection methods, such as Canny and Sobel operators, emphasize 

boundary identification but are sensitive to noise and variations in image quality, as highlighted 

by [15]. These techniques often necessitate additional processing for refined segmentation. 

Several researchers have sought to improve traditional methods. Nemoto et al. [16] introduced 

a novel algorithm combining the point convergence index with spiculation likelihood to detect 

AD, significantly reducing false positives from 84.48 to 0.80 per image while maintaining 80% 

sensitivity. Rangayyan et al. [17] utilized directional filtering to model normal breast 

architecture, achieving 81% sensitivity on the MIAS dataset, demonstrating its potential for early 

AD detection. Anand and Rathna [18] employed a contourlet transform-based approach, 

leveraging multi-scale and directional analysis, reporting an 87% accuracy on the MIAS dataset. 

However, its computational intensity limited real-time clinical application.  

Banik et al. [19] applied Gabor filters and phase-portrait analysis, extracting features like 

fractal dimension and angular power entropy, achieving an AUC of 0.78 with a neural network 

classifier. Matsubara et al. [20] developed an automated detection method using directional and 

background filters to analyze linear structures, achieving 81% sensitivity with 2.5 false positives 

per image in a dataset of 174 AD cases and 580 controls. 

2.2. Machine Learning Approaches 

Machine learning (ML) techniques have significantly advanced the field of medical image 

analysis by improving segmentation accuracy and robustness. Two prominent ML approaches 

are Support Vector Machines (SVMs) and Random Forests. SVMs are a class of supervised 

learning algorithms used for classification and regression tasks. In medical image segmentation, 
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SVMs can classify pixels or regions based on extracted features such as texture or intensity. 

According to [21], SVMs offer robust performance in distinguishing between different types of 

tissue or abnormalities, particularly when combined with feature extraction techniques like 

Histogram of Oriented Gradients (HOG) or texture descriptors. 

Netprasat et al. [22] employed a machine learning approach to detect AD, using SVMs to 

classify suspicious regions in mammograms. Their method focused on extracting texture and 

intensity features, which were then fed into the SVM for classification. Like Rangayyan's study, 

this research also utilized the MIAS dataset for testing, which provided a consistent comparison 

point. The study reported a detection accuracy of 90%, which was a marked improvement over 

more traditional image analysis techniques. This increase in accuracy highlights the potential of 

machine learning to enhance mammographic analysis, especially in distinguishing between 

malignant and benign patterns. Nevertheless, the study suggested that additional work could be 

done to optimize the feature extraction process to further improve detection rates. 

Raaj and Thirumurugan [23] developed a hybrid classification approach for AD detection that 

combined two machine learning techniques: Support Vector Machines (SVMs) and k-nearest 

neighbors (k-NN). The features were extracted using the Gray Level Co-occurrence Matrix 

(GLCM), a texture-based method widely used in image analysis. This dual approach allowed the 

system to leverage the strengths of both classifiers, leading to improved performance. Tested on 

the MIAS dataset as well as private datasets, the method achieved a sensitivity rate of 85%, 

demonstrating its robustness across different datasets. The combination of two classifiers 

provided more flexibility in capturing complex patterns of AD in mammograms. However, while 

the hybrid model showed promise, further evaluation on larger datasets was suggested to confirm 

its generalizability. 

Du et al. [24] took a more advanced approach by combining a non-subsampled contourlet 

transform (NSCT) with an improved pulse-coupled neural network (PCNN) for detecting AD in 

mammograms. The use of NSCT allowed for the extraction of multi-scale, multi-directional 

features, which were crucial for capturing the subtle patterns characteristic of AD. This method 

was applied to both the DDSM (Digital Database for Screening Mammography) and private 

datasets, achieving a sensitivity of 92%. The high sensitivity demonstrated the power of 

combining multi-resolution analysis with neural networks in detecting subtle architectural 

distortions that are often missed by traditional methods. While the results were highly promising, 

the computational complexity of the method was noted as a potential barrier to widespread 

clinical implementation, suggesting the need for further optimization. 

Random Forests, an ensemble learning method, aggregate predictions from multiple decision 

trees to improve classification accuracy. In segmentation tasks, Random Forests leverage various 

features to differentiate between normal and distorted tissue regions. Research by [25] 

demonstrates that Random Forests can handle diverse image characteristics and improve 

segmentation outcomes compared to simpler methods. However, these methods still face 

challenges related to feature selection and computational complexity.  
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2.3. Deep Learning Techniques 

Deep learning has revolutionized medical image segmentation by providing advanced 

methods that offer high accuracy and adaptability. Convolutional Neural Networks (CNNs) and 

other neural network architectures are at the forefront of this transformation. CNNs are designed 

to automatically and adaptively learn spatial hierarchies of features from input images. They 

have demonstrated significant success in segmenting medical images, including architectural 

distortions. [26] shows that CNNs can learn complex patterns and features from large datasets, 

allowing for precise segmentation of subtle distortions. The ability of CNNs to perform end-to-

end learning and feature extraction reduces the need for manual feature engineering and 

enhances overall segmentation performance. 

The U-Net architecture, introduced by [27], is a specific type of CNN tailored for biomedical 

image segmentation. Its U-shaped structure consists of a contracting path to capture context and 

a symmetric expanding path for precise localization. [27, 28] highlight the effectiveness of U-

Net in segmenting medical images, including mammographic images with architectural 

distortions. The U-Net’s skip connections help retain fine-grained details, which is crucial for 

accurately delineating distortions. GANs have emerged as a powerful tool for enhancing image 

segmentation results by generating synthetic data or improving image quality. GANs consist of 

two neural networks, a generator and a discriminator, that compete in a game-theoretic 

framework. [29] discusses recent developments in applying GANs to medical imaging, including 

their use for data augmentation and improving segmentation performance by generating high-

quality synthetic images. GANs help address issues related to data scarcity and variability, 

thereby enhancing the robustness of segmentation models.  

Kulkarni and Rabidas [30] developed a novel deep dilated fully convolutional neural network 

(DDFCNN) tailored for detecting various breast cancer abnormalities, including architectural 

distortion (AD), masses, and microcalcifications, within mammogram images. The DDFCNN 

architecture incorporates a multi-scale feature extraction module, allowing it to capture a diverse 

range of abnormal patterns by using convolutional filters of varying sizes. Additionally, the 

dilation module within DDFCNN preserves high-resolution image details, essential for 

accurately localizing abnormalities in dense breast tissue. Their extensive evaluations on both the 

DDSM and mini-MIAS datasets reveal significant improvements in accuracy, with the 

DDFCNN achieving 92.67% accuracy for AD detection on the DDSM dataset, accompanied by 

a false-positive rate of 0.46. Similarly, on the mini-MIAS dataset, the model attained a 95.07% 

accuracy rate with a false-positive rate of 0.31. The findings underscore DDFCNN’s potential as 

a robust tool for early breast cancer screening, with enhanced detection accuracy and reduced 

false positives compared to previous approaches, thus holding promise for improving early 

diagnostic outcomes in clinical settings. 

Ou, Weng, and Chang [31] introduced a structure fusion attention model aimed specifically at 

detecting architectural distortion in mammograms. This model employs a novel attention 

mechanism to selectively focus on key regions within mammographic images, effectively 

capturing subtle and irregular AD patterns that are challenging to detect with traditional 

techniques. By enhancing the localization of these patterns, the model achieves both high 
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detection accuracy and precision in identifying early signs of malignancy. Their approach 

highlights the efficacy of advanced attention mechanisms in improving AD detection, offering a 

potential advancement for early breast cancer diagnosis through enhanced image detail analysis. 

Table 1 clearly organizes the method, dataset, and results for each study. It shows that 

traditional methods like thresholding and edge detection have limitations, while machine 

learning and deep learning methods have gradually improved detection and segmentation 

accuracy through feature extraction and complex models like SVMs and CNNs. This 

comprehensive analysis demonstrates the shift from traditional methods toward ML and DL 

approaches, which offer improved sensitivity, accuracy, and efficiency for early AD detection in 

mammograms. 

Table 1: Summary of techniques for detecting and segmenting architectural distortion. 

Research year Dataset method Results 

Nemoto et 

al.[10] 

2008 25 CR 

mammograms 

Novel algorithm combining point 

convergence index with spiculation 

likelihood for detecting AD. 

Sensitivity: 80% with 

0.80 FPPI. 

Banik et 

al.[11] 

2012 Not specified Gabor filters and phase-portrait analysis 

for AD detection, calculating various 

features for refined classification. 

AUC: 0.76 

Rangayyan 

et al. [12]  

2013 MIAS dataset Directional filtering for AD detection by 

modeling normal breast architecture. 

Sensitivity: 81%  

Anand, S., & 

Rathna, R. 

A. V. [13] 

2013 MIAS dataset Contourlet transform-based AD detection, 

emphasizing directional and multi-scale 

features. 

Accuracy: 87% 

Netprasat et 

al. [14] 

2014 MIAS dataset SVM classifier with texture and intensity 

features for AD detection in 

mammograms. 

Accuracy: 90% 

Matsubara 

et al. [15] 

2015 174 AD cases 

and 580. 

Automated method using directional and 

background filters to detect linear 

structures for AD. 

sensitivity: 81% with 

2.5 FPPI. 

Du, G., 

Dong, M., 

Sun, Y., et 

al.[16] 

2019 DDSM and 

private 

datasets 

Non-subsampled contourlet transform 

(NSCT) combined with PCNN for multi-

scale, multi-directional feature extraction. 

Sensitivity: 92% 

Raaj, R. S., 

& 

Thirumurug

an, P. [17] 

2021 MIAS and 

private 

datasets 

Hybrid SVM and k-NN classification 

approach using Gray Level Co-occurrence 

Matrix (GLCM) for feature extraction. 

Sensitivity: 85% 

Kulkarni, S., 

& Rabidas, 

R. [18] 

2024 DDSM, mini-

MIAS 

Deep Dilated Fully Convolutional 

Network (DDFCNN) for multi-

abnormality detection. 

Accuracy for AD: 

92.67% (DDSM, FPR 

0.46); 95.07% (mini-

MIAS, FPR 0.31) 

Ou, T.-W., 

Weng, T.-C., 

& Chang, 

R.-F. [19] 

2024 Not specified Structure Fusion Attention Model with 

attention mechanisms for fine-grained AD 

detection. 

Enhanced sensitivity 

in identifying subtle 

AD patterns 
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3. PUBLIC DATASETS AND LIMITATIONS 

Public mammography datasets have played a pivotal role in advancing research on 

architectural distortion (AD) detection. However, several inherent limitations, particularly the 

lack of AD-specific annotations and pronounced class imbalance, present substantial challenges 

for the development of reliable automated systems. In the following section, we critically 

examine three major datasets, highlighting their respective constraints. A comparative overview 

of these datasets is summarized in Table 2. 

The Digital Database for Screening Mammography (DDSM), curated in the 1990s, contains 

over 2,500 scanned film mammograms from screening exams, including approximately 250 

cases with architectural distortion. While it remains a foundational resource, its utility is limited 

by low resolution, outdated technology, and sparse AD annotations. Images are digitized at 50 

μm/pixel, resulting in poor spatial clarity compared to modern full-field digital mammography 

(FFDM) systems. Additionally, film mammograms lack the dynamic range and contrast of 

digital systems, complicating AD detection in dense tissue. AD cases are not explicitly labeled, 

requiring manual extraction from textual pathology reports. Despite these shortcomings, the 

DDSM has been widely used to validate traditional methods, such as the work by Banik et al. 

(2012), which achieved an AUC of 0.76 using Gabor filters on DDSM images. 

The Mammographic Image Analysis Society (MIAS) database comprises 322 medio-lateral 

oblique (MLO) view mammograms digitized at 50 μm/pixel. While it provides region-of-interest 

(ROI) annotations for masses and calcifications, it lacks explicit AD labels, requiring researchers 

to infer AD cases from pathology reports or visual inspection, introducing subjectivity. 

Moreover, the dataset exhibits limited diversity as all images are from the same acquisition 

system, reducing generalizability. With only 15–20 suspected AD cases, MIAS is insufficient for 

training deep learning models. Studies like Rangayyan et al. (2013) leveraged MIAS to test 

directional filtering techniques, achieving 81% sensitivity, but the dataset’s constraints 

necessitate caution in extrapolating results to clinical settings.  

 

Table 2: Comparison of Public Mammography Datasets. 

Dataset Resolution AD Cases Annotations Key Limitations 

DDSM 50 μm/pixel ~250 Text-based pathology Low resolution, film artifacts 

MIAS 50 μm/pixel ~15 ROI masks (no AD labels) Small size AD cases 

INbreast 70 μm/pixel ~15 ROI masks + BI-RADS Sparse AD cases, class 

imbalance 

 

 

The INbreast database, released in 2012, is a high-resolution FFDM dataset containing 410 

mammograms (115 cases) acquired with a Siemens Mammomat Inspiration system at 70 

μm/pixel resolution. It offers detailed annotations, high image quality, and diverse cases, 

including normal, benign, and malignant exams across breast density categories. However, it has 



 BJEST (2025) Vol. X Issue (X) pp: XX-XX  

133 

 

critical limitations for AD research. Only 12–15 cases (≈12%) include architectural distortion, 

with most annotations focused on masses and calcifications. The class imbalance, with an AD to 

non-AD ratio of ≈1:10, leads models to prioritize majority classes during training. Additionally, 

with only 115 cases, it is inadequate for training data-hungry deep learning architectures like 

transformers. Kulkarni & Rabidas (2024) tested their Deep Dilated FCNN on INbreast but 

achieved lower accuracy (85%) compared to DDSM (92.67%) due to limited AD samples.  

4. FUTURE DIRECTIONS 

4.1. Enhancing Data Quality and Annotation 

The development of robust AD detection systems hinges on addressing critical gaps in existing 

datasets. Future efforts must prioritize comprehensive annotations that explicitly label 

architectural distortions, including spiculation patterns and associated BI-RADS categories, to 

standardize training and evaluation. Synthetic data augmentation, particularly through generative 

adversarial networks (GANs) and diffusion models, can mitigate class imbalance by synthesizing 

realistic AD cases in diverse breast densities. For instance, Avanzo et al. (2021) [32] 

demonstrated the potential of GANs to enhance medical imaging pipelines, though their work 

highlighted challenges in ensuring synthetic data fidelity across modalities. 

4.2. Advancing AI Architectures and Hybrid Models 

The integration of transformer-based models with convolutional neural networks (CNNs) 

represents a promising frontier for capturing both local texture details and global contextual 

relationships in mammograms. Chen et al. (2023) [33] showcased the effectiveness of the Swin 

Transformer in breast cancer detection, achieving state-of-the-art performance by leveraging 

hierarchical feature learning. Hybrid architectures combining CNNs with transformer self-

attention mechanisms could similarly enhance sensitivity to subtle AD patterns obscured by 

dense tissue. Furthermore, attention mechanisms, such as those in Li et al.’s (2022) [34] Dual 

Attention Networks, prioritize clinically relevant regions (e.g., spiculation convergence points), 

improving detection accuracy while maintaining computational efficiency. Pretraining vision 

transformers (ViTs) on large-scale medical imaging datasets may further reduce dependency on 

scarce AD-specific data. 

4.3. Advancing AI Architectures and Hybrid Models 

To translate AD detection tools into clinical practice, reducing false-positive rates is 

imperative. Multi-stage pipelines could first screen mammograms using high-sensitivity CNNs, 

followed by a second-stage classifier (e.g., SVM or random forest) to filter false alarms using 

clinical metadata and lesion morphology. Samala et al. (2020) [35] demonstrated the efficacy of 

deep convolutional neural networks (DCNNs) in reducing false positives for mass detection, a 

framework adaptable to AD through ensemble learning. Combined view analysis of craniocaudal 

(CC) and mediolateral oblique (MLO) mammograms, paired with explainable AI tools, would 

enable radiologists to validate AI findings against multi-angle evidence, fostering trust and 

reducing unnecessary biopsies. 
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5. CONCLUSION 

Architectural Distortion (AD) detection remains a formidable challenge in mammography due 

to its inherently subtle patterns and the scarcity of high-quality, annotated datasets. Unlike 

masses and calcifications, AD often manifests as faint disruptions in breast tissue architecture, 

requiring both computational precision and clinical expertise to identify. Despite these hurdles, 

early detection of AD is critical, as it can signify malignancy at stages where treatment is most 

effective, potentially saving countless lives through timely intervention. 

Deep learning models, such as U-Net and DDFCNN, have demonstrated superior sensitivity 

(85–92%) compared to traditional methods, automating feature extraction and reducing reliance 

on error-prone manual analysis. However, their performance is constrained by limited and 

imbalanced datasets, which skew training and validation outcomes. Future research must 

prioritize large-scale, diverse dataset curation to address class imbalance and improve 

generalizability. To translate these advancements into clinical practice, reducing false-positive 

rates through multi-stage detection pipelines and ensemble learning remains imperative. 

Simultaneously, efforts to enhance clinical utility will foster radiologist trust and adoption. By 

bridging these gaps, automated AD detection systems can minimize diagnostic delays, reduce 

unnecessary biopsies, and ultimately curb global breast cancer mortality rates. 
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